

Open Neuromorphic

Hybrid Learning for Event-Based Visual Motion Detection and Tracking of Pedestrians

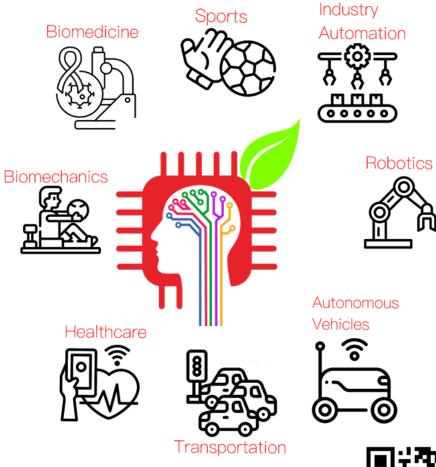
Cristian Axenie Nuremberg Institute of Technology, Germany

History, facts, and figures

A renowned patron

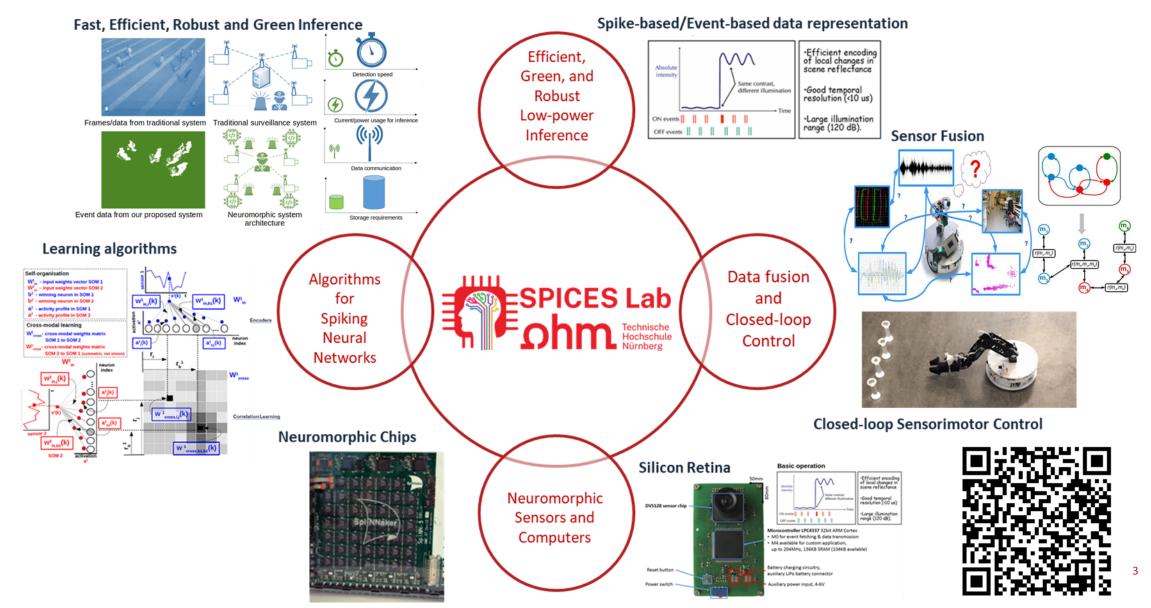
Proud of our roots

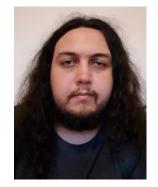
The university's roots (history) can be traced back to the year 1823 and the founding of the Städtische Polytechnikum (Municipal Polytechnic) – the oldest of our forerunners.


A renowned patron

The university is named after the world-renowned physicist, Georg Simon Ohm (biography), who was a physics and mathematics professor in Nuremberg between 1833 and 1849, and also fulfilled the role of rector.

The famous omega


The Greek letter omega in the university's logo is a tribute to Georg Simon Ohm's greatest discovery – his law concerning electrical resistance.



Sensorimotor Processing, Intelligence, and Control in Efficient compute Systems (SPICES) Lab

Team

Ertan Halilov

Julian Main

David Weiss

Cristian Axenie

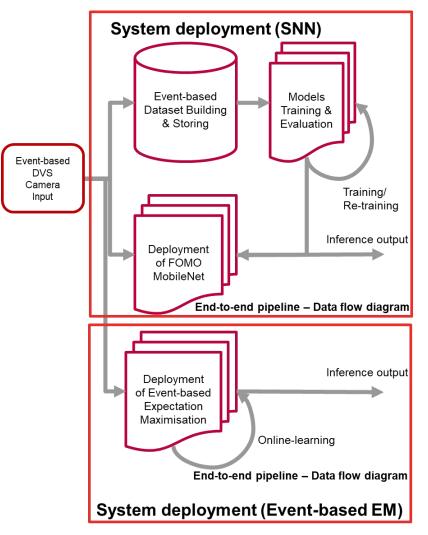
Outline

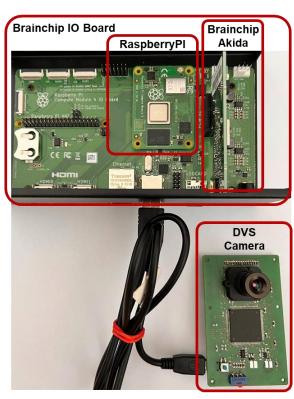
- Goal
- Solution overview
- Sensing and algorithmics
- Performance evaluation
- Deployment
- BOM

Goal

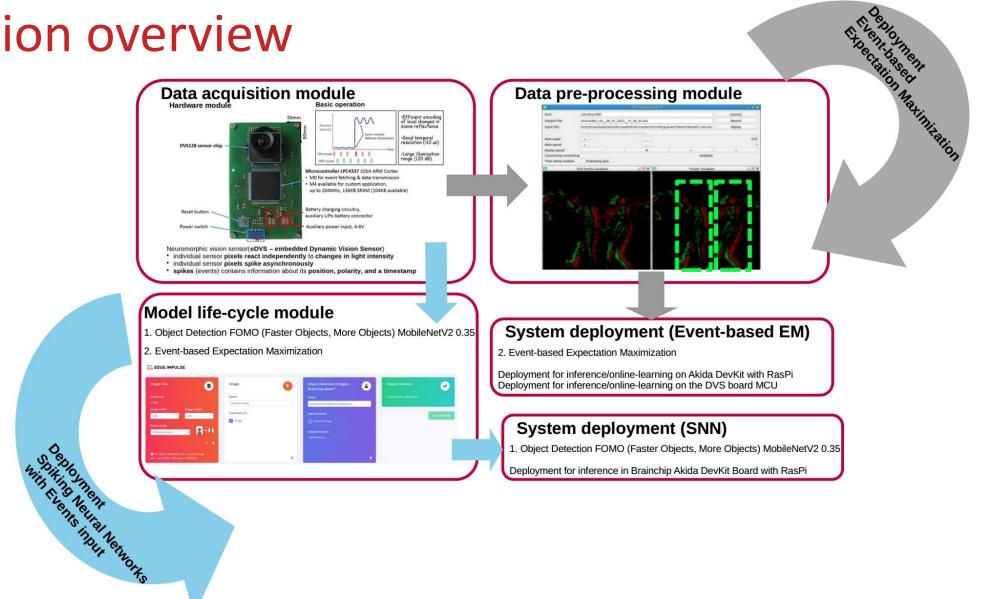
"Vision Zero" as a street safety policy that strives for the elimination of traffic fatalities for all transportation modes.

McKee Road & Jackson Avenue, San Jose, California


Tully Road & La Ragione Avenue, San Jose, California

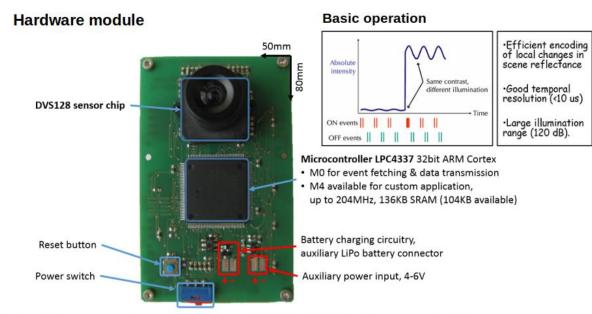

Cost effective and **accurate solutions** are needed to **detect pedestrians** during the **day** and especially at **nighttime** to implement safety measures. **Solutions** need to have a **very good energy footprint**, **robustness**, and a **budget** that allows scaling to city level.

Solution overview



End-to-end pipeline – System hardware

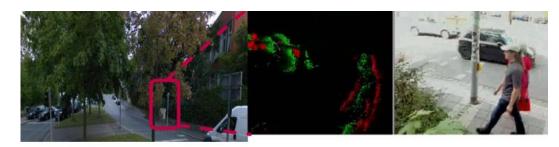
Solution overview



Solution development and life-cycle

EDGE IMPULSE	Cristian Axenie / Project SPIDER - Team NeurOhm Brainchip Akida				
Dashboard	Project info Keys Export Jobs				
Devices					
Data acquisition	Cristian Axenie / Project	SPIDER - Team NeurO	hm Brainchip Akida		
🚸 Impulse design	SPIDER - Spiking Perception and processing for Intelligent Detection (of pEdestrians on urban Roads	le.		
Create impulse					
Image					
Object detection	Getting started		*	Sharing	
Ø EON Tuner					
🔀 Retrain model	Start building your dataset or validate your model's on-device performance:				
📇 Live classification					
Model testing	8		*		
P Versioning	Add existing data	Collect new data	Upload your model		
Deployment	Start with a tutorial			Run this m	
GETTING STARTED	Not sure where to start? Follow a tutorial to build your first model in just	t minutes!		Scan QR coc	
ø Documentation					
Second Second	٠	E.	्यमि		

Approach


• Sensing

Neuromorphic vision sensor(eDVS - embedded Dynamic Vision Sensor)

- · individual sensor pixels react independently to changes in light intensity
- individual sensor pixels spike asynchronously
- spikes (events) contains information about its position, polarity, and a timestamp

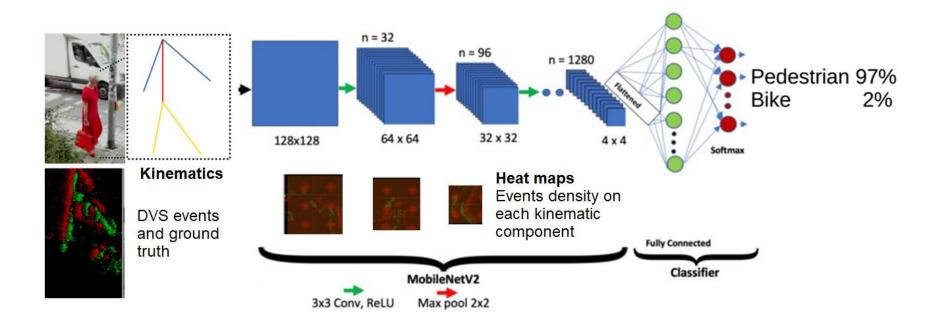
Urban intersection dataset (Nuremberg, Germany) daytime

Wide urban road dataset (Nuremberg, Germany) daytime



Wide urban road dataset (Munich, Germany) night-time

Approach


• Sensing

Approach

• Algorithmics – Fast Objects More Objects (FOMO) ConvNet, Spiking Neural Network (SNN)

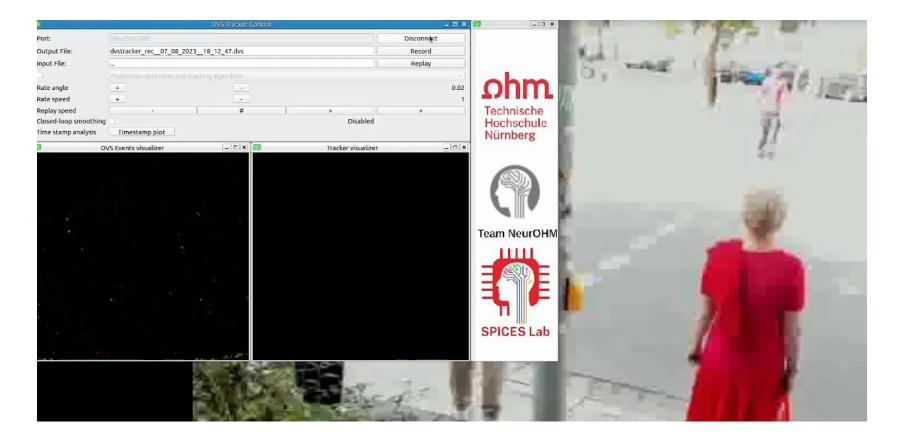
Demo - Spiking Neural Network (SNN)

Power consumption/inference step: 6.06 mW

Approach

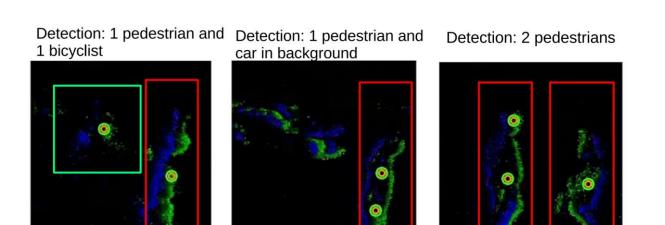
• Algorithmics – Event-based Expectation Maximization (EM)

Event-based Expectation Maximization $c_b = c_g$ Adding a prediction model • $\dot{\theta} = \frac{\Delta \theta}{\Delta t}$ (for each body segment) • Future centers: $c_h(t+T) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ Neuromorphic Event-based Camera Input **Skeleton Kinematics** $-\dot{\theta}_b \sin(\theta_b)$ $\dot{\theta}_b \cos(\theta_b)$ $c_r(t+T) = c_r(t) + T$ $\begin{vmatrix} -\dot{\theta}_b \sin(\theta_b) - \dot{\theta}_r \sin(\theta_r) \\ \dot{\theta}_b \cos(\theta_b) + \dot{\theta}_r \cos(\theta_r) \end{vmatrix}$ $c_{v}(t+T) = c_{v}(t) + T$ Future angles: $\theta(t+T) = \theta(t) + T\dot{\theta}$ (for each body segment) **Embedding physics in the Expectation Maximization** Event membership allocation and .


Future angles: $\theta(t + T) = \theta(t) + T\dot{\theta}$

Skeleton modelling

Future positions: $\vec{r}(t+T) = \vec{r}(t) + T \begin{pmatrix} -\dot{\theta}\sin(\theta) \\ \dot{\theta}\cos(\theta) \end{pmatrix}$ d: Likelihoods estimation


Demo - Event-based Expectation Maximization (EM)

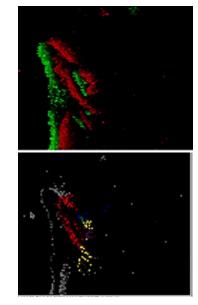
Performance

• Spiking Neural Network

Qualitative evaluation

Quantitative evaluation

Dataset	Background %	Bicyclist %	Pedestrian %
Dataset 1 (daytime)			
Background	99.70	0.26	0.04
Bicyclist	12.10	87.90	0.00
Pedestrian	6.20	0.00	93.80
F1-Score	1.00	0.62	0.77
Dataset 2 (daytime)			
Background	97.50	2.20	0.80
Bicyclist	10.10	89.90	0.00
Pedestrian	3.20	0.00	96.80
F1-Score	1.00	0.70	0.87
Dataset 3 (night)			
Background	99.07	0.30	0.00
Bicyclist	21.10	78.00	0.90
Pedestrian	10.20	13.00	76.80
F1-Score	0.90	0.60	0.70


Performance

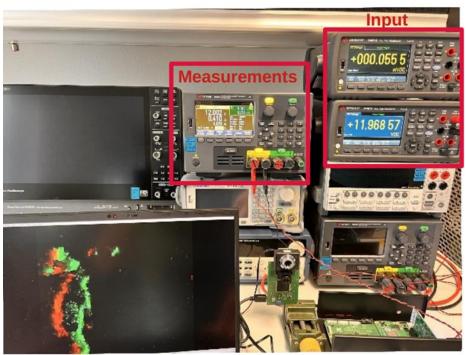
• Event-based Expectation Maximization

Qualitative evaluation

Pedestrian tracking

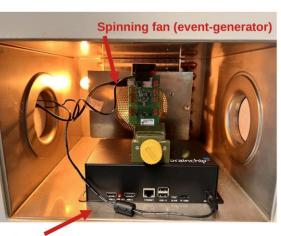
Quantitative evaluation

Dataset	Bicyclist	Pedestrian
Dataset 1 (daytime)		
Track Matching Error(%) Tracking Time Delay(s) Tracking Detection Rate(%) Tracking Completeness(s)	13.70 0.08 95.00 0.38	10.10 0.03 98.00 0.25
Dataset 2 (daytime)		
Track Matching Error(%) Tracking Time Delay(s) Tracking Detection Rate(%) Tracking Completeness(s)	11.20 0.07 97.00 0.38	8.21 0.02 99.00 0.25
Dataset 3 (night)		
Track Matching Error(%) Tracking Time Delay(s) Tracking Detection Rate(%) Tracking Completeness(s)	23.30 0.09 76.00 0.84	20.10 0.08 79.00 0.76


Ωhm

Deployment evaluation

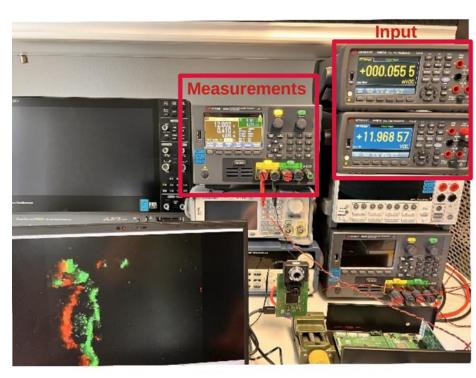
• Power consumption & weatherization analysis


Measurement setup

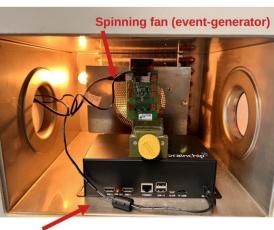
Camera pointing to a screen with recorded traffic data

Events visualizer on edge device

Edge device: Brainchip Akida RaspberryPi board and event-based neuromorphic camera


Dataset	Power(W)	Latency(ms)
Dataset 1 (daytime)		
· • /	7.58	14.32
Dataset 2 (daytime)		
	4.92	8.21
Dataset 3 (night)		
	5.65	24.62

Deployment evaluation


Power consumption & weatherization analysis

Measurement setup

Camera pointing to a screen with recorded traffic data

Edge device: Brainchip Akida RaspberryPi board and event-based neuromorphic camera

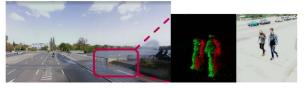
DatasetPower(W)Latency(ms)Dataset 1
(daytime)7.5814.32Dataset 2
(daytime)4.928.21Dataset 3
(night)5.6524.62

Complete BOM and costs

Bill of Materials (BOM) Single unit & suggested price for large quantities				OUTLET Samsung SmartThings Vision Motor senser, whereas, 2.4 OPc. A security feature that registers movements without infrequence ovcour prove life. The movementa are only recorded as altibuation. It uses
Component	Price	Notes	Product number: 2784571	At to deputy human movements so that the alarm is not togened by pets or moving cutans. The At can also detect formore in failing over, and this detection can be connected to an alarm to enable quick assistance. read more Normal-price-6188.00 €771.74 €08.29 excl. VAT
Raspberry PI Compute Module 4 IO Board with RPI CM4Lite	50 \$	Price pro unit sold independently from the Brainschip Akida PCIexpress board (see below). https://www.reichelt.de/de/de/raspberry-pi-compute-modul-4-io-board-rpi-c m4-io-board-p290556.html	Source: https://www.proshop.nl/Smar	Cheapest private shipping 60.99
Brainchip Akida AKD1000 PCIexpress Board	499 \$	Price pro unit sold independently from the IO board/carried board. https://shop.brainchipinc.com/products/akida%E2%84%A2-development-kit -pcie-board	Initiation	inge 6 is that a funct Transford of products
IniVation Dynamic Vision Sensor	2500 \$	Price per unit, with up to 50 \$ if large quantities purchased. https://shop.inivation.com/collections/dvxplorer-lite-1/products/dvxplorer-lite-commercial-rate		DVVBplane LDa - COMMERCIAL RATE (2,600 ^{m)} Receive unimized at dominal. Typ and to care Management and the second at the second
USB to miniUSB cable	1 \$ (1m long USB cable) – 26 \$ (5m long USB cable with signal amplifier)	Length of the cable depends on the gantry layout, we have tried with 1m long USB cable and also with signal amplification 5m long USB cable. https://www.conrad.de/de/p/delock-usb-kabel-usb-3-2-gen1-usb-3-0-usb-3- 1-gen1-usb-a-stecker-usb-a-buchse-5-00-m-rot-schwarz-vergoldete-steckk ontakte-ul-zertifiziert-82755-649883.html	Source: https://shop.inivation.com/co	Mutatusfadame - 992-900 markadame - #d 1 W 199 9 20 mm Ilections/dvxplorer-lite-1
Total	3076 \$	Price per unit. When more units are bought a total price of approx. 226 \$ for a price per unit 100 \$ for Akida Chip , 50 \$ for RaspberryPI boards , 50 \$ for DVS camera , and long USB cable 26 \$.	Best price ~226\$ Worst price ~3000\$	20

ohm Deliverables

• Datasets release


Dataset location 1

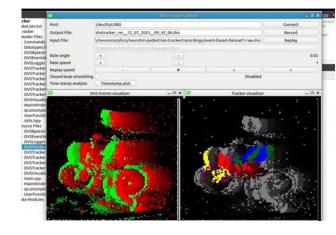
- 4 lanes (4 per direction) wide street
- Location: <u>https://goo.gl/maps/JaYGwaTaBHj5H6SL9</u>
- 50 kmh (urban) speed limit
- Near university campus with Pedestrians (people walking), Bicyclists (people biking, scooting, rolling, etc.)
- Ideal Operating Environment

Dataset location 2

- 8 lanes (4 per direction) wide street
- Location: <u>https://goo.gl/maps/jar6AjysZiM2LP5S7</u>
- 50 kmh (urban) speed limit
- Near main train stations of the city and a location with Pedestrians (people walking/running/jogging), Bicyclists (people biking, scooting, rolling, etc.)

Dataset location 3

- 6 lanes (3 per direction) wide street on bridge
- Location: https://goo.gl/maps/SEEsmpgmLPcD8fG7A
- 50 kmh (urban) speed limit
- Near ring street of Munich and a location with Pedestrians (people walking/running/jogging), Bicyclists (people biking, scooting, rolling, etc.)
- Night time data acquisition



Model life-cycle and data analysis

EDGE IMPULSE		Cristian Axenie /	Project SPIDER - Team NeurChm Brainchip Akida		
Dashboard	Project info Keys Export Jobs				
Devices					
Data acquisition	Cristian Axenie / Project	SPIDER - Team NeurOh	m Brainchip Akida		
Impulse design					
Create impulse	OBJECT DETECTION OBJECT DETECTION * New tag				
 triaga 					
Object detection	Getting started				
EON Tuner					
Retrain model	Start building your dataset or validate your model's on-device performance:				
Live classification					
Model testing	8	•	*		
Versioning	Add existing data	Collect new data	Upload your model		
Deployment	Start with a tutorial				
TING STARTED	Not sure where to start? Follow a tutorial to build your first model in just	minutes			
Documentation					
Forums					
	Motion: Gesture recognition	Images: Object detection	Audio: Audio classification		

Accurate TinyML algorithms

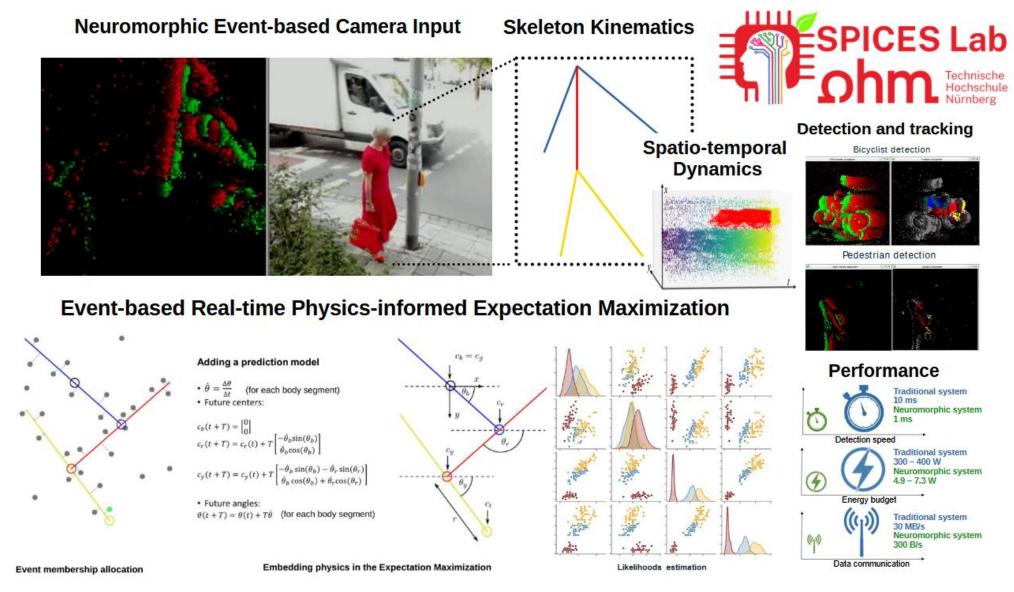
Solution release

Minimal energy footprint

Deployment Akida Spiking Neural Networks in Event data

Deployment RaspberryPi Event-based Expectation Maximization

Feasible deployment



Wrap-up

TinyML solution for supporting VisionZero pedestrian detection

- uses low-power neuromorphic sensing and processing
- employs only local processing (at the edge)
- provides **good accuracy** for **robust visual detection** under varying conditions
- Current development:
 - HD Event-based camera (Prophesee EVK3)
 - Explore new computing platforms (Synsense Speck)
 - Deployment at city-scale (Stadt Schwabach)

