From C/C++ to Dynamically Scheduled Circuits

Explore the journey from C/C++ to Dynamically Scheduled Circuits with Lana Josipović, an expert in high-level synthesis and reconfigurable computing. Join her recorded workshop session on innovative hardware design techniques.

Social share preview for From C/C++ to Dynamically Scheduled Circuits

Upcoming Workshops

Tonic: Building the PyTorch Vision of Neuromorphic Data Loading
Gregor Lenz
September 29, 2025
20:00 - 21:30 CEST

About the Speaker

Lana Josipović is an Assistant Professor in the Department of Information Technology and Electrical Engineering at ETH Zurich. Prior to joining ETH Zurich in January 2022, she received a Ph.D. degree in Computer Science from EPFL, Switzerland. Her research interests include reconfigurable computing and electronic design automation, with an emphasis on high-level synthesis techniques to generate hardware designs from high-level programming languages. She developed Dynamatic, an open-source high-level synthesis tool that produces dynamically scheduled circuits from C/C++ code. She is a recipient of the EDAA Outstanding Dissertation Award, Google Ph.D. Fellowship in Systems and Networking, Google Women Techmakers Scholarship, and Best Paper Award at FPGA'20.

Inspired? Share your work.

Share your expertise with the community by speaking at a workshop, student talk, or hacking hour. It’s a great way to get feedback and help others learn.

Related Workshops

Evolutionary Optimization for Neuromorphic Systems

Evolutionary Optimization for Neuromorphic Systems

Dive into evolutionary optimization techniques for neuromorphic systems with Catherine Schuman, an expert in the field. Watch the recorded workshop for valuable insights.

Towards Training Robust Computer Vision Models for Neuromorphic Hardware

Towards Training Robust Computer Vision Models for Neuromorphic Hardware

Join Gregor Lenz as he delves into the world of event cameras and spiking neural networks, exploring their potential for low-power applications on SynSense's Speck chip. Discover the challenges in data, training, and deployment stages. Don't miss this talk on training robust computer vision models for neuromorphic hardware.

The ELM Neuron: An Efficient and Expressive Cortical Neuron Model Can Solve Long-Horizon Tasks

The ELM Neuron: An Efficient and Expressive Cortical Neuron Model Can Solve Long-Horizon Tasks

Aaron tells us about the Expressive Leaky Memory (ELM) neuron model, a biologically inspired phenomenological model of a cortical neuron.